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ABSTRACT

Flight Operations Quality Assurance (FOQA)-derived data was used to develop
parsimonious model(s) for fuel consumption on a Boeing 757 airplane using
regression analysis. Using the model(s), it should be possible to identify outliers
(specific flights) with respect to fuel consumption, which will enable the air carrier to
investigate the cause of excessive fuel consumption and remedy the problem A major
air carrier provided the database used for the study. Fuel flow was predicted by
calibrated airspeed, gross weight, and n2 (ENG[1 or 2]n2). The models containing
these three variables explained approximately 85% of the variation in fuel flow. A
reporting routine using these models and FOQA data should be incorporated into the
ongoing quality assurance program of the air carrier.

INTRODUCTION

The airline industry, perhaps more than any other, is one that is
characterized by large numbers. As example, consider that it costs more
than $60 million to purchase and configure one new Boeing 757-200
airplane (Jackson, 2001); that a Boeing 757-200 holds more than 11,000
gallons of jet fuel (Jackson, 2001); that U.S. air carriers consume
approximately 14 billion gallons of fuel annually in domestic operations
(Fuel, 2002); and that in 2001, U.S. air carriers generated total operating
revenues of $375.7 billion in domestic operations and $382.6 billion in
operating expenses—a margin of -$6.9 billion (Yearly, 2002).

Given these numbers, it is not surprising that air carriers strive to contain
their operating costs. Fuel expenditures represent the industry’s second-
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largest operating cost category. To aid in managing this expenditure,
extensive fuel-related research is being conducted by a host of
organizations, including government, industry, and academia, but the
research is primarily focused on engineering-related areas of fuel
efficiency. Little exists in the literature on efforts to establish new programs
that may improve an air carrier’s ability to monitor fuel consumption.

Recent technological advances in hardware and software now enable a
wealth of flight performance data to be captured, stored, and retrieved from
transport category aircraft. Analysis of this performance data has the
potential of revealing problems that may be causing excessive fuel
consumption on specific airplanes. These problems may be caused by
airframe or engine abnormalities and may result in significantly higher fuel
costs to the airline and, ultimately, higher costs to the traveling public.
Thus, both the airlines and the public should benefit from the analysis of
flight performance data for fuel consumption anomalies.

Many aircraft and component manufacturers, such as The Boeing
Aircraft Company, have developed programs for monitoring aircraft
performance. These programs range from the relatively simple recording of
instrument indications as observed by the flight crew to the digital
recording of numerous parameters using airborne sensing and recording
devices. Among the apparent deficiencies of some of these programs is that
the data is limited to parameters that are strictly performance-related; to
wit, parameters that may provide additional insight into the object of
concern are sometimes unavailable in the existing performance monitoring
programs.

One of several emerging quality assurance programs in the aviation
industry, Flight Operations Quality Assurance (FOQA), involves the
routine collection and analysis of a full range of data recorded on the
airplane for the purpose of improving safety and operational procedures.
Since FOQA is not as data-limited as are traditional aircraft performance
monitoring programs, FOQA warrants study as a performance monitoring
tool. The current study explores the use of FOQA in monitoring the
important area of fuel consumption.

Purpose of the Study

The purpose of the study was to develop a parsimonious model(s) for
fuel consumption using multiple regression analysis to analyze FOQA-
derived data, with the objective of being able to identify outliers (specific
flights) with respect to fuel consumption. The identification of outliers will
enable the air carrier to investigate the cause of excessive fuel consumption
and remedy the problem. While other aircraft manufacturer and airline
initiatives may also lead to such identification of anomalies, the availability
of FOQA data to use for this purpose offers airlines robust new tools for
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monitoring fuel consumption. For the study, flight performance data from a
Boeing 757-200 model aircraft were collected and analyzed.

Flight Operations Quality Assurance

According to Yantiss (2001), the role of quality assurance in the U.S.
aviation industry involves assessing the effectiveness of the systems,
controls, and work processes established for any function for the purpose of
identifying the areas in the operation that may lead to a breakdown. Yantiss
observed that quality is the means to achieving all quality parameters,
including an organization’s safety performance parameters. In the past
several years, numerous programs have emerged for the purpose of
assuring quality, including safety, in the aviation industry, such as the
Aviation Safety Action Program, Air Transport Oversight System, Internal
Evaluation Program, Advanced Qualification Program, and Flight
Operations Quality Assurance. As indicated by this proliferation of quality
and safety programs, quality assurance is evolving and expanding in the
airline industry.

In 1995, the U.S. Department of Transportation (DOT) sponsored an
aviation safety conference in cooperation with representatives from
industry and government. The focus of the conference was the development
of additional measures that might be implemented to reverse the trend of an
increasing number of accidents in the airline industry. One of the
significant conclusions of the conference was that the voluntary
implementation of FOQA might be the most promising initiative to reduce
the number of accidents. Upon the recommendation of the conference
attendees, the Federal Aviation Administration (FAA) sponsored an FOQA
demonstration project with the following objectives: to develop hands-on
experience with FOQA technology in an U.S. environment, document the
cost-benefits of voluntary implementation of FOQA programs, and initiate
the development of organizational strategies for FOQA information
management and use (Federal Aviation Administration, DOT, 1998). The
FAA-funded $5.5 million demonstration project was begun in July 1995.

Essentially, “FOQA is a program for obtaining and analyzing data
recorded in flight to improve flight crew performance, air carrier training
programs and operating procedures, air traffic control procedures, airport
maintenance and design, and aircraft operations and design” (U.S. General
Accounting Office, 1997). FOQA is a voluntary program that involves the
routine downloading and systematic analysis of aircraft parameters that
were recorded during flight. The recording unit, which receives data from
the flight data acquisition unit(s), is either a crash-protected device or a
quick access recorder (QAR). The QAR is a device that allows convenient
access to the recording medium and typically records more data than crash-
protected devices. Three types of analysis can be performed on the data: (a)
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exceedance detection, which is the continuous comparison of recorded
operational data with predefined parameters to detect occurrences that
exceed those parameters; (b) data compilation, which is used to determine
the operation and condition of engines and systems; and (c) diagnostics,
research, and incident investigation (Holtom, 2000).

Most air carrier aircraft store FOQA data on an optical storage device
and then transfer the data to a ground analysis system where it is processed
by expert software. Typically, modern digital aircraft capture and store
between 200 and 500 parameters per second (U.S. General Accounting
Office, 1997), including gauge readings, switch positions, control wheel
deflections, control positions, engine performance, hydraulic and electrical
system status, and many others.

According to the FAA, ten U.S. airlines have implemented FOQA
programs (Federal Aviation Administration, DOT, 2001). The benefits
from these programs are beginning to be documented. Several examples of
safety and operational problems for which FOQA provided objective
information are cited by the U.S. General Accounting Office (1997).

1. An airline discovered through its FOQA program that the number of
exceedances was greater during flight in visual conditions than in
instrument conditions. This finding caused the airline’s training
managers to change the training program to emphasize flight in
visual conditions. This is a demonstrable quality and safety benefit
that was enabled by the FOQA program.

2. Another airline’s FOQA analysis determined that the incidence of
descent-rate exceedances was unusually high at one particular
runway at a specific airport. The cause was determined to be a poorly
designed instrument approach procedure that required flight crews to
descend steeply during the final approach segment. When these
findings were shared with the FAA, the approach was redesigned to
correct the problem.

3. FOQA has provided a number of airlines with objective, quantitative
information that can be used to evaluate approach procedures that are
unusual with respect to rate of descent or excessive maneuvering at
low altitude.

4. Airlines have reported that they have used FOQA information to
identify and correct a variety of safety problems through changes or
renewed emphasis in standard operating procedures, retraining, and
repair of faulty equipment.

The FAA’s preliminary estimates of costs versus benefits of FOQA
programs are encouraging to advocates of FOQA. In 1991 it was estimated
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that the annual cost of a FOQA program with 50 aircraft was approximately
$760,000 per year. Savings from reduced expenditures for fuel, engine
maintenance, and accident costs were estimated at $1.65 million per year,
resulting in a net annual savings of $892,000 (U.S. General Accounting
Office, 1997).

METHODOLOGY

Statistical Methodologies

Regression analysis is a tool used with proven success in studies dealing
with prediction of dependent variables. As such, there are numerous studies
in the literature that illustrate the use of regression analysis in the quality
field (e.g., Young, 1996), in the field of aviation (e.g., Gibbons &
McDonald, 1999; Luxhoj, Williams, & Shyur, 1997), and in fuel
consumption analysis (Redsell, Lucas, & Ashford, 1993). Attractive
features of regression analysis are its general ease of use, the flexibility of
inserting and removing independent variables, and its potential use with
existing data. Regression analysis models attempt to describe the extent,
direction, and strength of relationships between a single dependent variable
and one or more independent variables. The continuous dependent variable
represents an expression of events or conditions that researchers desire to
explain through existing knowledge of the independent variable(s)
(Stammer, 1982).

Several of the variables considered in the analysis were engine specific
(e.g., exhaust gas temperature, engine pressure ratio), while most were not
directly related to the engines (e.g., flap position, total air temperature,
altitude). The presence of engine specific variables necessitated the
exploration of two models—one using Engine 1-related variables along
with the remaining (non engine-specific) independent variables, and a
second model using Engine 2-related variables along with the remaining
variables.

Boeing 757-200

The Boeing 757-200 was the aircraft used in the study. The Boeing 757
is a twin-engine, medium- to long-range commercial jetliner that is in
widespread use in the air transportation industry. Of the 5,445 Air
Transport Association (ATA)-member U.S. air carrier aircraft in service in
2000, 567 (10.4%) are Boeing 757 model aircraft (Air Transport
Association, 2000). As of December 2001, Boeing reported total orders of
987 and total deliveries of 965 for the 757-200 model, including domestic
and international sales (Commercial, 2001). Basic specifications for the
subject aircraft are included in Table 1 (Jackson, 2001).
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Data Used for the Study

The data used for the study were provided by a major air carrier. The
database consists of 3,480 routine passenger-carrying flights on six Boeing
757-200 aircraft that occurred during a six-month period from October
1999 to March 2000. AVSCAN analysis software was used. In accordance
with FOQA procedures, the data were de-identified as they were processed
by the FOQA analysis software; that is, information that could connect a
specific flight crew with a particular flight was removed from the data.

Data Point Selection

Although data is captured and stored each second during the operation
of the aircraft, it is impractical to analyze what is essentially a continuous
stream of information. Therefore, a single data point was identified for each
flight and used for the analysis. Since the purpose of the study was to
develop a regression equation for the purpose of identifying outliers with
respect to fuel consumption, the cruise phase of flight was determined to be
the most appropriate focus for this investigation. The cruise phase is
important for several reasons: (a) on a typical flight, a large proportion of
the fuel is consumed during the cruise segment; and (b) more stable
performance information can be obtained during cruise compared to other
phases of flight.

Upon investigation, it was discovered that Honeywell had established
conditions to be used for determining the best point (i.e., stable conditions)
during cruise flight to capture data for airplane and engine performance
analysis purposes (Honeywell International, 1997). Further, the program
written by Honeywell is designed to capture and use only one data point per
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Table 1. Boeing 757-200 Specifications

Feature Specification

Wingspan 124 feet 10 inches (38.05 meters)

Length 155 feet 3 inches (47.32 meters)

Overall Height 44 feet 6 inches (13.6 meters)

Cruising Speed Mach 0.80

Range (with 201 passengers) 2,570 (4,759 kilometers)

Passenger Capacity 195 to 231

Maximum Takeoff Weight 220,000 lbs. (99,790 kilograms)

Engines (2) Pratt & Whitney PW 2037

Engine Thrust (per engine) 36,600 lbs. (162.8 kilonewtons)

Standard Fuel Capacity 11,276 gallons (42,684 liters)

Note. These specifications are generally consistent for the Boeing 757-200 as configured for the air carrier
that provided the database.



flight. The stability logic used by Honeywell was replicated as closely as
possible in the FOQA system for data point selection purposes. Several
steps were accomplished to create such a point within AVSCAN.

First, 46 computed parameters necessary for the logic were created. The
creation of these parameters enabled the collection of information such as
the test period; stability basic conditions; the highest level flight altitude
attained during the flight; the measurement period; and the minimum,
maximum and stability values for recorded parameters such as altitude,
engine performance, airspeed, altitude, and others, during the test period.

Second, a new AVSCAN event, stableperiod, was created to enable a
data collection point during stable engine cruise. It is possible for this event
to occur only one time during each flight. The data used for the study were
the data collected at the time of the stableperiod event.

Third, a new template file was created that included the new computed
parameters and the new event. The process of creating a template was
repeated several times and tested on a small portion of the database for
validity. Thirteen templates were designed and rejected due to problems
discovered during the validation process.

Selection of Parameters

There are many factors that influence fuel consumption in a transport
category aircraft, such as thrust setting, altitude, temperature, weight of the
aircraft, and other environmental and flight conditions (Padilla, 1996). The
method used to identify the factors that would be included in the regression
analysis was to refer to technical information produced by The Boeing
Company. Specifically, Boeing produces an Airplane Performance
Monitoring (APM) program to assist operators in performance monitoring
of Boeing aircraft. The results of the program are used for tracking long-
term airframe and engine performance trends. The APM program provides
for manually recording cruise performance data using a Manual Standard
Interface Record Format (MSIRF), as well as an automated method using a
Digital Standard Interface Record Format (DSIRF). MSIRF considers only
7 primary parameters (mach, exhaust pressure ratio, fuel flow, total air
temperature, altitude, calibrated airspeed, and gross weight), while DSIRF
captures approximately 48 performance related parameters within 181 total
field names (The Boeing Company: Flight Operations Engineering, 1999).
In the documentation, Boeing states that by analyzing cruise performance
data, the APM program will identify airplanes for which performance has
deviated from the applicable baseline. Thus, it can be inferred that
abnormal or inadequate performance would be reflected in these 48
performance parameters using DSIRF, and perhaps especially in the 7
parameters using MSIRF. Further, it follows that if an abnormal
performance condition exists, this will be reflected in the fuel flow rate(s)
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of the engine(s), as well as in other parameters. For example, if a landing
gear door is misrigged and introduces increased parasitic drag to the
airplane in cruise flight, the performance of the airplane will deteriorate.
This will result in the need for additional engine thrust, and consequently
fuel flow, to travel at the same speed; if additional thrust and fuel are not
provided, the airspeed will decrease. Since fuel flow is one of the
parameters recorded in both MSIRF and DSIRF formats, anomalous
airplane performance that is reflected in other performance parameters
should be detectable in the fuel flow variable. It is the examination of these
variables and their relationship to fuel flow that was the object of this
investigation.

All 7 parameters listed in MSIRF were available in the FOQA database.
Of the 48 parameters listed in DSIRF, many were not relevant to the study,
many were essentially duplicates (e.g., calibrated airspeed left and
calibrated airspeed right), and several of the parameters were not captured
by the FOQA system. Hence, the number of parameters available for the
study for each engine was 20 (excluding fuel flow which was the predicted
variable in the study). These parameters are listed in Table 2.
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Table 2. FOQA Parameters

FOQA Parameter Name Definition

Mach Mach

CAS Calibrated airspeed

TAT Total air temperature

ALT Altitude

GWeight Gross weight

ENG1epr, ENG2epr Engine 1 and 2exhaust pressure ratio

ENG1n1, ENG2n1 Engine 1 and 2 n1

ENG1n2, ENG2n2 Engine 1 and 2 n2

ENG1egt, ENG2egt Engine 1 and 2 exhaust gas temperature

AOA Angle of attack

ATTroll Angle of bank

ATTpitch Pitch attitude

SFCstab Stabilizer position

CTLspdbrk Speedbrake control position

SFCalrn Left aileron position

SFCalrnrt Right aileron position

SFCrudder Rudder position

SFCelev Left elevator position

SFCelevrt Right elevator position

SFCflap Flap position



RESULTS

Following the elimination of erroneous data, the flap position parameter
for all the remaining flights was zero. Thus, the flap position parameter was
removed from further consideration, and the total number of parameters
used in the study was reduced to 19. Given that the pool of predictor
variables was not excessively large, a standard regression approach was
used following reasoned elimination of curvilinear, multicollinear, and
non-significant predictors. The predictors with curvilinear indications
included total air temperature, exhaust pressure ratio, ENG1n1, ENG2n1,
angle of attack, pitch altitude, and stabilizer position. For example, Figure 1
illustrates a clear curvature in the exhaust pressure ratio for Engine 1 data,
and indicates that a quadratic function (R2 = .201) provides a better fit to the
data than does a linear function (R2 = .005).

Stolzer 11

Independent: ENG1epr

Dependent Mth R2 d.f. F Sigf b0 b1 b2

ENG1FF LIN .005 1846 10.20 .001 3763.80 -286.41

ENG1FF LOG .010 1846 18.84 .000 3508.14 -467.28

ENG1FF INV .016 1846 30.36 .000 2838.07 704.470

ENG1FF QUA .201 1845 232.22 .000 21603.2 -29832 12183.7

9 ENG1FF CUB .201 1845 232.22 .000 21603.2 -29832 12183.7

Notes:
9 Tolerance limits reached; some dependent variables were not entered.

Figure 1. Curvature of ENG1epr Data
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Since high levels of interactions among predictors can lead to spuriously
high R values, particular attention was paid to collinearity analysis.
Univariate correlations showed that there was severe collinearity between
some of the predictors (e.g., r CAS and ENG1epr = -0.75; r CAS and
ATTpitch = 0.76; r ENG1epr and ATTpitch = 0.73). The variables
correlating with other predictors higher than 0.70 included calibrated
airspeed, altitude, exhaust pressure ratio ENG1n1, ENG2n1, ENG1n2,
ENG2n2, exhaust gas temperature for each engine, angle of attack, and
pitch altitude. Several transformations were performed on these variables,
such as square root, log, and inverse transformations. These
transformations had only a marginal effect on the interactions.

Also of concern was the skewness of several of the variables. Predictors
mach, altitude, angle of bank, and stabilizer position all had skewness
factors of over 2.5. Given the ranges and variances of these variables,
transformations did little to correct the problem of skewness and, in some
cases, adversely affected the data. For example, mach (MACH) had a
skewness value of –3.996. The skewness factor of MACH square root
was –4.205, MACH inverse was 4.881, MACH square was –3.601, and
MACH log was –4.422.

Altitude (ALT) had a skewness factor of –2.876. The quadratic function
of ALT [3244.39 + .0778 (ALT) – .000002 (ALT)2], improved the skewness
factor to 1.372 (and fit the data slightly better than the linear function –.357
R2 linear; .385 R2 quadratic). However, the quadratic function did little to
improve multicollinearity problems (i.e., r ALT quadratic and CAS = .958;
r ALT quadratic and ENG1epr = –.775; r ALT quadratic and ENG2epr =
–.774).

Variables that were both curvilinear and exhibited multicollinearity
were eliminated from further consideration. These included exhaust
pressure ratio for each engine, ENG1n1, ENG2n1, angle of attack, and
pitch attitude. Predictor stabilizer position, which was both curvilinear and
highly skewed, was eliminated. Predictor altitude, which was both
multicollinear and highly skewed, was eliminated. Finally, predictors mach
and angle of bank, which were highly skewed and did not respond to
transformations, were eliminated. The remaining variables were regressed
against the dependent variable(s) [i.e., fuel flow for each engine (ENG1ff
and ENG2ff)].

Engine 1 Model Building

The remaining variables pertaining to Engine 1 (calibrated airspeed,
gross weight, ENG1n2, exhaust gas temperature, speedbrake control
position, left and right aileron positions, rudder position, and left and right
elevator positions) were entered into a standard, non-stepwise regression.
Variables that did not predict well (p > 0.05), had extremely small effect
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sizes ( beta < 0.10), or low tolerance/high Variance Inflation Factor (VIF)

values (VIF > 10.0) were removed and a new regression computed. The
non-predictive variables included speedbrake control position, left and
right aileron positions, and left and right elevator position. The variables
with small effect sizes included speedbrake control position, left and right
aileron position, rudder position, and left and right elevator positions. No
variable had VIF values significant to warrant removal of the variable.

Four predictors remained for the Engine 1 model: calibrated airspeed,
gross weight, ENG1n2, and exhaust gas temperature. These predictors
produced a model with an R2 of .888. Since the objective was to obtain the
most parsimonious model possible while retaining good predictive
capabilities, the regression was re-performed with each variable deleted in
turn. The removal of either calibrated airspeed or gross weight seriously
degraded the model; the R2 of the model excluding calibrated airspeed was
.470, and the model excluding gross weight had an R2 of .732. However, the
removal of either ENG1n2 or exhaust gas temperature did not significantly
affect the model. The model that included the three predictors calibrated
airspeed, gross weight, and ENG1n2 had an R2 of .850. The model with
only calibrated airspeed, gross weight, and exhaust gas temperature had an
R2 of .879. Either of these models compared favorably to the four variable
model R2 of .888; thus, it was determined that a three-predictor model was
the best compromise of performance and model size. Since a common
model for both engines was desired, it was decided to examine Engine 2
data before selecting the third predictor (i.e., either ENG1n2 or exhaust gas
temperature) for the model.

Engine 2 Model Building

Steps consistent with those followed for fitting the Engine 1 model were
followed for Engine 2. Predictors calibrated airspeed, gross weight,
ENG2n2, exhaust gas temperature, speedbrake control position, left and
right aileron positions, rudder position, and left and right elevator positions
were entered into a standard regression. Variables that did not predict well,
had extremely small effect sizes, or low tolerance/high VIF values were
removed and a new regression computed. The non-predictive variable was
left aileron position. The variables with small effect sizes included
speedbrake control position, left and right aileron positions, rudder
position, and left and right elevator positions. No variables had significant
VIF values.

Four predictors remained for the Engine 2 model: calibrated airspeed,
gross weight, ENG2n2, and exhaust gas temperature. These predictors
produced a model with an R2 of .935. As was the case with Engine 1, the
removal of either calibrated airspeed or gross weight seriously degraded the
model. The removal of ENG2n2 or exhaust gas temperature adversely
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affected this model more than the removal of the corresponding variables in
the Engine 1 model, but the degradation was not serious. The model that
included calibrated airspeed, gross weight and ENG2n2 had an R2 of .863,
and the model with calibrated airspeed, gross weight and exhaust gas
temperature had an R2 of .852.

There is a very slight preference for inclusion of the ENG[1 or 2]n2
variable rather than using exhaust gas temperature as the third predictor in
the models. The exhaust gas temperature variable was slightly preferred
over the ENG[1 or 2]n2 variable in the Engine 1 model (0.879 R2 versus
0.850 R2, respectively), while the Engine 2 model performed slightly better
with the ENG[1 or 2]n2 variable (0.863 R2 versus 0.852 R2 for the exhaust
gas temperature variable). Nevertheless, the ENG[1 or 2]n2 predictor
seemed to perform slightly better overall.

Engine 1 Regression

The parameters of calibrated airspeed, gross weight and ENG1n2
predicted the fuel flow of Engine 1. The initial regression equation had an
R2 of .850, and was expressed as: – 9213.354 + 11.008 CAS + 0.008542
GWeight + 94.257 ENG1n2. This model worked for all but four
observations in which the standardized residual exceeded 3.0. Removing
these outliers redefined the equation only slightly. The final equation is:
– 9170.077 + 10.943 CAS + 0.008657 GWeight + 93.701 ENG1n2, with an
R2 of .853. The equation is significant, the tolerances are very high
indicating little or no multicollinearity among predictors and the betas are
large and uniform.

Engine 2 Regression

The fuel flow of Engine 2 was predicted by calibrated airspeed, gross
weight and ENG2n2. The initial regression equation had an R2 of .863, and
was expressed as: – 9388.823 + 10.894 CAS + 0.008622 GWeight + 96.166
ENG2n2. This model worked for all but twelve observations in which the
standardized residual exceeded 3.0. After removing these observations, the
final equation is: – 9347.178 + 10.835 CAS + 0.008726 GWeight + 95.616
ENG2n2, with an R2 of .872. The equation is significant, the tolerances are
very high indicating little or no multicollinearity among predictors and the
betas are large and uniform.

Model Adequacy

The models formulated were checked for adequacy through the
examination of residuals and testing for a linear fit of the predictors to the
dependent variable. Based on an analysis of residuals and tests for linear fit,
there does not appear to be any correlation between random errors, the
variables appear to be linearly related, and there appears to be reasonably
consistent variances in the data for both models.
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Model Validation

The most desirable method of validating a regression model with respect
to its prediction performance is to use new data and directly compare the
model predictions against them (e.g., Montgomery, Peck, & Vining, 2001).
FOQA data on 179 additional flights on Boeing 757-200 aircraft were
obtained from the same major air carrier that provided the initial database.
Fifty of these flights were selected at random using a random number
generator utility, and these fifty data files were processed using the
template file created for the study. Table 3 contains the results of the
analysis.

The average prediction error is zero pounds per hour of fuel
consumption for Engine 1 data and 35 pounds per hour for Engine 2 data.
These errors are at or nearly zero, so it may be concluded that the models
seem to produce reasonably unbiased predictions. For Engine 1 data, a
comparison of the residual mean square from the fitted model,
MSRes = 11640, to the average squared prediction error, 7591, indicates that
the regression model predicted new data slightly better than it fit the
existing data. For Engine 2 data, the residual mean square is 9917, and the
average squared prediction error is 7296. The performance of both models
suggests that they are likely to be successful as predictors.

It is also useful to compare R2 from the regression models to the
percentage of variability in the new data explained by the model. In the case
of the Engine 1 model, R2 is 86.3% and the variability explained by the
model is 87.0%. The Engine 2 model indicated an R2 of 87.2% and the
variability explained is 87.5%. As with the analysis of residual mean
squares, the prediction of new observations by both models was
approximately equivalent to the fit of the original data.
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Table 3. Model Validation Data for Engine 1 and Engine 2

Factor Engine 1 Engine 2

No. of Observations 50 50

Avg. Fuel Consumption—Observed (Pounds Per Hour) 3278 3249

Avg. Fuel Consumption—Predicted (Pounds Per Hour) 3278 3214

Avg. Prediction Error (Pounds Per Hour) 0 35

Sum of Squared Prediction Error 379567 364818

Avg. Squared Prediction Error 7591 7296

Sum of Actual Minus Avg. Fuel Consumption 2920296 2920296

Percentage of Variability Explained by Model 87.0 87.5



Comparison of Actual and Projected Fuel Flow

It was also hypothesized that the actual total fuel flow (engines 1 and 2
combined) was greater than that projected by the manufacturer. Based on
statistics literature for selection of sample sizes for hypothesis testing, a
sample size of 66 flights was determined to be appropriate given a database
of 1,848 flights containing the stableperiod event, a 10% maximum
acceptable margin of error, and a 90% confidence level. A random number
generator utility was used to randomly select these 66 flights from the
database. The projected total fuel flow for each of these flights was
determined by consulting the following charts and graphs in the Boeing
757 Performance Engineers Manual: Generalized Thrust; Fuel
Flow/Engine Standard Day; Standard Atmosphere; and Fuel Flow Factor to
Be Applied for Non Standard Day Temperatures (The Boeing Commercial
Airplane Company, 1996). For these 66 flights, the mean actual total fuel
flow was 6,813 pounds per hour and the mean projected total fuel flow was
6,429 pounds per hour; thus, the mean difference was 384 pounds per hour
fuel flow. At the 99% confidence level, the value of the test statistic, t, is
13.16, and the p-value is 0.000. The 99% confidence interval of the
difference has a lower limit of 306 and an upper limit of 461; thus, the limit
does not contain the value zero. Based on the p-value and the confidence
interval of the difference, the null hypothesis was rejected and it was
concluded that the actual total fuel flow was significantly greater than that
projected by the manufacturer.

CONCLUSIONS

Multiple linear regression analysis was accepted as an appropriate
technique for modeling fuel consumption on the Boeing 757 transport
category aircraft using FOQA data. Using regression methods consistent
with those used in other studies (e.g., Irish, Barrett, Malina, & Charbeneau,
1998; Young, 1996), models were developed that predicted fuel flow on
new FOQA data to a degree comparable to the original data. Parameters
specified by Boeing to monitor airplane performance were useful in
identifying the FOQA parameters to be used in the modeling process.
Criteria used by Honeywell to establish stable cruise flight for data
selection purposes appeared to work well for the study, though the
percentage of flights containing the stableperiod event was only 53%.

It can be concluded that a parsimonious model can be developed for
predicting fuel flow using FOQA data. The model(s) developed can be
incorporated by the airline into regular reporting routines to enhance its
quality assurance program. This reporting and analysis will enable the
investigation of abnormal fuel consumption for the source of the problem
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and the remedy, and may ultimately result in a financial savings to the
airline.

Analysis also revealed that actual fuel flow was significantly greater
than the fuel flow projected by the manufacturer. This conclusion adds
additional support to existing literature (e.g., Lukins, 1984) that suggests
that flight performance deteriorates as airplanes age and accumulate flight
time. Airframe and engine time information on the subject airplanes was
not made available to the researcher for this study, so it was not possible to
compare the degree of degradation with the age of the aircraft.
Nevertheless, the analysis performed has implications to air carriers for
fuel planning based strictly on manufacturer’s data, and demonstrates that
further study is needed to quantify the degradation.
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